-.. . & Py - > :

. . | AT :

= . Revamping Spacecraft
... Operational Intelligence

-~ with Splunk

Victor Hwang -
EPOXI Flight Mission

Jet Propulsion Laboratory, California Institute of Technology

3 : Copyright 2012 California Institute of Technology. Government
vt sponsorship acknowledged.

Hi everybody. Today I’'m going to talk about EPOXI’s experience with a Big Data tool, Splunk.
The goal of this experiment was to try and improve our team’s operational intelligence, or

in another words, the ability for us to see trends and high level information in the machine
data

Machine Data is Everything

- The reason | started down this path to begin with was because I'm quite new to mission
operations. | joined the team about 2 years ago having worked mostly in web and
software development, with an interest in data visualization.

- So when | began learning to fly the spacecraft, | was instantly overwhelmed by the sheer
amount of data | had to filter through. In this image, you can see one of our telemetry
displays. Unlike my very seasoned co-workers, | had a difficult time getting an overall
understanding of what was going on just by glancing at these pages. If a problem
occurred, | wouldn’t notice until later because the important information would be
hidden in pages and pages of data.

- . Once | became more familiar with the telemetry data and displays, | was still pretty
inefficient at reading it quickly because | couldn’t customize the interface to my liking,
and the data was more low-level than | needed to see.

Correlating Different Data

: 2012-080T01:33:00.019, IINHIUAXF_400€011_001_017.bin,End ground reception,Comp

: 2012-080T01:33:00.020, IINHIUAXF_4000011_002_017.bin,Start ground reception,

: 2012-080T01 6, IINHIUAXF_4000011_007_017.bin, EndingDownlink

: 2012-080T61 , ITINHIUAXF_40060011_008_017.bin, StartingDownlink

: 2012-088T01 , IINHIUAXF_4000011_082_017.bin,End ground reception,Comp
rt: 2012-080T01 .119, IINHIUAXF_4000011_003_017.bin,Start ground reception,

: 2012-080T01 .522, IINHIUAXF_4000011_008_017.bin, EndingDownlink

: 2012-080T01: .523, IINHIUAXF_4@00011_009_017.bin, StartingDownlink

: 2012-080T01:36:50. , IINHIUAXF_400e011_0e3_e17.bin,End ground reception,Comp.
rt: 2012-880T01:36:50. , ITINHIUAXF_40060011_004_017.bin,Start ground reception,

*2012*117*dtl | tail -5

dsot 11e 1643 Apr 26 ©3:45 IINHIUBXF_4000127_01
dsot 118 1643 Apr 26 ©3:47 IINHIUBXF_4000127_01.
dsot 11e 1643 Apr 26 ©3:49 IINHIUBXF_4000127_01
dsot 110 1643 Apr 26 03:51 IINHIUBXF_4000127_01
dsot 118 1643 Apr 26 03:53 IINHIUBXF_4000127_01

| had trouble with other things beyond the telemetry system as well. when analyzing
historic spacecraft data, | always wasted a lot of time collecting data. On top of that, |
would spend a non-trivial amount of time scripting one-time-use tools to do a quick
analysis. For example, there were times when | wanted to make sure our file downlink rate
was what | expected. This is important in order to know how many files we can downlink in
a given time. In order to do this, | would have to compare our prediction data with the
timestamps of files. This picture shows the two formats of the information — a flat file with
a bunch of text, and a long directory listing of when the files were actually received on the
ground. Doing this analysis was a little annoying.

“Where do I find that data?”

S e —
Stored Streaming
Telemetry Telemetry

CSV piped over socket

Transaction
logs

CSV file

Upcaming
schedule of
events

e
Tab Delimited File

Spacecraft
i Log Files
$cd...

$ grep -i 2012-140T ... | awk ‘{print $2} ... > output

Upcoming 8
week simulation

So, to put the problem in concrete terms, the trouble | had stemmed from the fact that our
data was scattered all over the place in difficult to read formats. Beyond real time
telemetry data, we have transaction logs, downlinked images, spacecraft logs, schedules,
and more. These were stored on a number of different servers and databases, and all had
varying formats.

And, as | said before, parsing this data always involved some serious command line
munging.

Upcoming 8
CSV file week simulation
data

Tab Delimited File
Spacecraft
Log Files

$ sourcetype=telemelry sensor_name=temp_1 earliest=-5min

Upcoming
schedule of
events

Tab Delimited File

CSV file

So what is Splunk? Instead of giving the technical details, which you can find online, I'll tell
you what it did for me. Splunk slapped everything into one place, with one uniform format,
and gave me the ability to forget about all these annoying details of where it is, how to
parse it, and all that. Instead, | only need to interact with Splunk to find the data | need.
This sounds simple and obvious, but it’s surprising what you can do once you all of your
data is indexed in one place.

By having your data organized, querying becomes much easier. Let’s say that | want to
search telemetry for a sensor_name “temp_1" and to return all data that is at most five
minutes old. And because Splunk can hook into a real-time stream, this data will always be
up-to-date.

Data Mashup

rch

urcetypesimage_dtl OR sourcet ype<ACE_logs OR chan_names5-4900 B
T
1301 matehing overes O CE8 =08
. az Unoarscala 1 bar =1 hawr
as
4,00 PM 600 PM 800 P
Friktay 4
12
ddiscovery is: [EIN 1,301 events from 3 PM 10 10 PM Friday, May 4, 2012
B [[50per pax
tected fioids

Extending the previous example, | can now aggregate all types of data into one view based
in time. In this picture, I've got transaction logs, telemetry, and downlinked files all in one
page, organized by time. Even though the raw data looks completely than this, I’'ve defined
interfaces that transform it into this uniform format. This gives me a more complete picture
for the question “what was the spacecraft doing at this particular time?” And because
guerying data is simple, | can start with a big block of data and whiddle it down to what |
need, rather than hunting around for the individual pieces of data that | need.

What can I do now?

O Unixlike queries
Sensor_name=temp_1 | head 5
Sensor_name=temp_1 | sort —-temp| head 5

Sensor_name=temp_1 | delta temp as tmp_chg | where
tmp_chg > 10

When we have all the data we need, we can begin widdling down the data with Splunk’s
Unix-like search syntax. These three examples highlights my trial-and-error attempts to find
large temperature changes. | begin by showing the first 5 temperatures, only to find that
they’re sorted chronologically, rather than from highest temperatures to lowest
temperatures. The next line shows sorting temperatures by their values, but | find that
that’s not really what | want either. | want to know the delta temperatures between
readings. Looking through Splunk’s user manual, | find the delta function, which lets me
dynamically generate new information to use in my query. With that extra piece of
information, | can now return only the telemetry readings where the temperature changed
by at least 10.

One other useful feature I'll mention is that all of these queries can be run through Splunk’s
API. So any scripting language you can think of can plug right in and make these queries.
This gives us the ability to build a lot of new tools.

Dashboards/Telemetry
Displays

With this query language, you can start building some pretty cool tools. If you look
carefully, you’ll notice this telemetry display, or dashboard, has absolutely nothing to do
with spacecrafts. However, it’s a good example of the user interface and visualizations
Splunk can provide. This in-browser dashboard hooks right into Splunk’s search system,
and you can begin building some impressive displays with only a few clicks of a mouse.

Now I'll show you some of my dashboards, which are not nearly as pretty as this.

Quick Downlink Analysis

Filename = FileState + DLTime =
IINHIUBXF_4000127_017_017.bin-DI_FBB-2A14-2012-117T03.53.25.dt COMPLETE 121

IINHIUBXF_4000127_016_017.bin-DI_FBB-2A13-2012-117T03.5 COMPLETE 107

IINHIUBXF _40 5_017.bin-DI_FBB-2A1 COMPLETE
IINHIUBXF _40(COMPLETE
IINHIUBXF_40 COMPLETE

IINHIUBXF _40 COMPLETE

IINHIUBXF _4000127_01 COMPLETE
IINHIUBXF_4000127_010_0 COMPLETE
IINHIUBXF_4000127_009_017.bin COMPLETE 123
IINHIUBXF_40 COMPLETE 305

IINHIUBXF_4000127 COMPLETE 110

IINHIUBXF_4000127_006 COMPLETE 117

This image shows one dashboard element | made with only one search query. As |
mentioned before, | often check to see how long it takes to downlink an image. Here, as
the images come down in real-time, Splunk’s system continuously refreshes a table
containing each file and their downlink time. Again, this was formed with just a few search
queries similar to those on the previous slide.

Quick Plotting

0 Channel_name=signal_strength earliest=-40m | timechart span=5s
first(digital value)

Instantaneous Signal Strength

-169

-169.5

Signal Strength

-170.5

3:50 AM 3:55 AM 4:00 AM 4:05 AM 4:10 AM 4:15 AM
Fri Apr 20
2012

Splunk has a powerful graphing module that allows you to set up real-time plots very
quickly. Here, we’re plotting signal strength over time by specifying the period that we’d
like to graph over (last 40 minutes) and taking one value every 5 seconds. The problem with
this graph is that we cannot see the trend — the timespan is too short, and the data is too
noisy. In our old system, this would take a bit of scripting to fix.

10

Quick Plotting

sourcetype=DSN telemetry channel name=signal strength earliest=-2h |
timechart span=10m median(digital value)

Avg Signal Strength

-165

-170

Signal Strength

-175

Z:Od AM 2:30 AM 3:00 AM 3:30 AM 4:00 AM
Fri Apr 20
2012

However, all it takes with Splunk is to alter the search syntax to span the past two hours,
bucket the data into 10 minute chunks and take the median. Now we see the trend much
more clearly.

Building Telemetry Displays

24 10

In Lock. OutOfLock OUT OF LOCK

Along with the graphing modules, Splunk also has intuitive user interfaces for building
“dashboards”, which are equivalent to telemetry displays. While this telemetry display isn’t
novel by any means, it was built in less than five minutes with a simple point-and-click
interface. Because Splunk also has LDAP authentication built in, each user can build their
own unique telemetry display or pick from a global set of displays. Because these are all in-
browser displays, they can be pulled up virtually anywhere with any system.

12

Putting it together...

In Lock. QutOfLock QUT OF LOCK

So here is a complete picture of one of my dashboards, with the elements that | described
earlier. Not nearly as pretty as the promotional screenshot, but considering this took me
10 minutes to make, I'm pretty pleased.

As a side note, one useful feature that our current system lacks is back-fill. Meaning, when |

pull up this page, it will populate graphs immediately without having to wait for more data
to stream it.

O Query until your
expected result
appears...if not, send an
alert

Expect data from
spacecraft by beginning-
of-track + 30 minutes.
If not, send alert

$ search telemetry
earliest=-5m | head 1

Alerting System

Create Alert |
€ Schedule g
*Name | |
Schedule Run on a schedule once every... |
Cron schedule |
00"
o PLe
Search time range
-1d to now
ELe
Trigger if Number of results i |
Is less than ~| 500

Because searches can be run continuously, Splunk makes it easy to set up an alerting
system in case your data isn’t showing what you expect it to. One simple example is
sending an alert if the spacecraft isn’t talking to us when we expect it to. To set this up, you
would activate the alert based on some tracking schedule. Then, you specify the search to

begin at the beginning of the track, and to trigger if no results have appeared

14

Distributed Architecture and
Scaling

Search head (distributed search)
Indexers
.
-~ N

N |

Forwarders v/ S " A ot
L ’ ===
load balancing =N > -] il ——

Now, you might be wondering what Splunk actually looks like. | won’t get too much into
detail, but to put it into real terms, Splunk has an architecture that allows it to be
distributed across as many machines as you need. Obviously, if you're dealing with
terabytes of data a day, one machine won’t cut it. By designating many machines to only
index data or to only process search queries, you can keep your data behind firewalls or on
specific machines without worrying about data privacy issues while simultaneously
increasing the throughput of your system.

15

Conclusion: What did Splunk

do for us?
0O Organized our data

O Provided a new platform to develop tools and
manipulate data

O Gave us new user interfaces to our realotime data

16

